Questio	on	Expected Answers	Marks	Additional Guidance
1 (a)	(i)	$CH_4 + Br_2 \longrightarrow CH_3Br + HBr \checkmark$	1	ALLOW any correct multiple IGNORE state symbols
	(ii)	Dibromomethane OR tribromomethane OR tetrabromomethane ✓	1	ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. CH ₂ Br ₂
	(iii)	Br ₂ → 2Br OR homolytic fission of bromine ✓ Br + CH ₄ → HBr + CH ₃ ✓ CH ₃ + Br ₂ → CH ₃ Br + Br ✓ Br + CH ₃ → CH ₃ Br OR Br + Br → Br ₂ ✓ Ethane made when two methyl radicals react OR CH ₃ + CH ₃ → C ₂ H ₆ ✓ Quality of Written Communication – Consists of initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation: 2 names of steps linked to correct equations ✓ BUT 3 names of steps linked to correct equations ✓	7	All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination If no equations are given to link the names of the step then award one mark for mention of all three steps

Question	Expected Answers	Marks	Additional Guidance
(b)	EITHER Nucleophilic substitution \checkmark Example of nucleophilic substitution \checkmark Heterolytic fission \checkmark C–I curly arrow \checkmark Correct dipole on C— I bond \checkmark OH ⁻ curly arrow from one lone pair on O of OH ⁻ ion OR from minus sign on OH ⁻ ion \checkmark	6	The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF $H_3C - C - OH + I^-$ $H_3C - OH + I^-$
	OR Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from C=C bond to Br—Br bond and Dipole and curly arrow associated with Br ₂ \checkmark Correct carbocation ion \checkmark Curly arrow from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion \checkmark		ALLOW mechanisms for other halogenoalkaes $H \xrightarrow{CH_3} H \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$
	ALLOWElectrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile(i.e. NO_2^+ OR Br^+) \checkmark Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark	Exam Heter Corre Curly OR fr	DW eophilic addition ✓ ople of nucleophilic addition ✓ olytic fission ✓ ect dipole on carbonyl group ✓ arrow from lone pair on H ⁻ ion rom minus sign on H ⁻ to C=O carbon and breaking of C=O bond ✓ arrow from carbonyl oxygen to either H ⁺ or H ₂ O ✓
	Total	15	

C	Questi	on	Expected Answers	Marks	Additional Guidance
2	а		Answers clockwise from top left	4	ALLOW skeletal formula
			CH ₃ CH ₂ CH ₂ COOH ✓		ALLOW butanoic acid
			CH ₃ CH ₂ CHCH ₂ ✓		ALLOW but-1-ene
			CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃ ✓		ALLOW butyl ethanoate
			CH ₃ CH ₂ CH ₂ CHO ✓		ALLOW butanal
					If name and structure given both must be correct
					If C_3H_7 used instead of $CH_3CH_2CH_2$ penalise once and then apply ECF
					If wrong carbon skeleton used then penalise once then apply ECF
					If a hydrogen is missing then penalise once

Quest	tion	Expected Answers	Marks	Additional Guidance
b	i	Nucleophilic substitution ✓	5	ANNOTATE WITH TICKS AND CROSSES
		Heterolytic \checkmark Dipole shown on C–I bond, C ^{δ+} and I ^{δ-} \checkmark Curly arrow from OH ⁻ to carbon atom of C–I bond \checkmark		DO NOT ALLOW fish hooks No need to show lone pair on OH ⁻ or I ⁻ Curly arrow must come from the negative sign or lone
		Curly arrow from C–I bond to the iodine atom \checkmark		pair on the oxygen of the hydroxide ion $\begin{array}{cccc} & H_{7} & - & H_{1} \\ & G_{3}H_{7} & - & G_{3}H_{7} & - & H_{1} \\ & H_{1} & - & H_{2} \\ & H_{2} & - & H_{2} \\ & H_{1} & - & H_{2} \\ & H_{2} & - & H_{$
				ALLOW S _N 1 mechanism dipole shown on C–I bond, $C^{\delta+}$ and $I^{\delta-} \checkmark$ curly arrow from C–I bond to the iodine atom \checkmark curly arrow from OH ⁻ to correct carbonium ion \checkmark
	ii	Use reflux OR heat for more than 20 minutes ✓	2	ALLOW heat stronger OR heat for longer OR heat at a higher temperature OR more heat
		C–C <i>l</i> stronger bond (than C–I bond) OR C–C <i>l</i> shorter bond (than C–I bond) OR C–C <i>l</i> bond is harder to break OR needs more energy to break C–C <i>l</i> bond OR ora \checkmark		Answer must refer to the C–C <i>l</i> bond or C–I bonds
		Total	11	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
3	(a)	(i)	$C_{2}H_{5}$ $C_{$	3	Additional Guidance no need to show any lone pairs on oxygen but must have a clear negative sign rather than partial negative charge IGNORE lone pairs IGNORE lone pairs IGNORE products of this reaction ALLOW curly arrow from a negative charge or from any part of hydroxide ion If S _N 1 mechanism is given then use the mark scheme below correct partial charges on C—I ✓ C–I curly arrow from the bond not from carbon atom ✓ curly arrow from the OH ⁻ to the correct carbocation ✓ Image: C_2H_5 — C + C + OH^- H Image: C_2H_5 — C + OH^- H Image: C_2H_5 — C + OH^-
		(ii)	nucleophilic substitution ✓	1	
	(b)		C–I bonds broken more easily ✓ C–I bonds are weaker OR have less bond enthalpy OR C–I bonds are longer ✓	2	ALLOW ora e.g. C—Br bonds are stronger OR broken less easily

Question	Expected Answers	Marks	Additional Guidance
(c)	 Any TWO from: CFCs take many years to reach the ozone layer OR long residence time ✓ CFCs are still being used ✓ there are other ozone depleting substances ✓ 	2	IGNORE because chlorine radicals stay in the stratosphere ALLOW other named ozone depleting substances e.g.
(d) (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	NO and HFCs Free bonds at bond ends must be present ALLOW minor slip e.g. missing one hydrogen and left as a stick ALLOW more than two repeat units but must be a whole number of repeat units IGNORE brackets, use of numbers and n in the drawn structure
(ii)		1	ALLOW skeletal formula ALLOW CH ₂ CHF
(e)	Any two from: separation into types and recycling OR sort plastics, melt and remould ✓ combustion for energy generation ✓ used for cracking OR feedstock for plastics or chemicals ✓	2	IGNORE biodegradable used as a fuel is insufficient releases energy is insufficient ALLOW burning plastics to release energy ALLOW organic feedstock / raw materials to make
	Total	12	organic compounds

Q	uesti	on	Answer	Mark	Guidance
4	(a)	on	Answer (The hydrocarbons have) different boiling points ✓ The larger the molecules the stronger the van der Waals' forces ✓	<u>Mark</u> 2	Guidance PLEASE READ COMMENT ON PAGE 3 ALLOW longer chains have higher boiling points OR separation based on boiling point OR condense at different temperatures ALLOW the larger molecular size more van der Waals' forces OR longer chains have stronger van der Waals' force OR the more electrons, the stronger the van der Waals' forces OR the more surface contact the more van der Waals' forces IGNORE surface area ALLOW ORA
					 van der Waals must be seen at least once in correct context ALLOW any 'recognisable' spelling of van der Waals', use of VDW is not sufficient DO NOT ALLOW intermolecular force unless qualified as van der Waals' somewhere
	(b)	(i)	$C_nH_{2n} \checkmark$	1	
		(ii)	$C_6H_{14} \rightarrow C_6H_{12} + H_2 \checkmark$	1	ALLOW displayed, skeletal or structural formulae or combination in the equation + 2

G	uesti	ion	Answer	Mark	Guidance
	(b)	(iii)			Assume comments refer to cyclohexane unless specified otherwise
			cyclohexane has more efficient combustion ✓	1	ALLOW cyclohexane allows smoother burning OR cyclohexane increases octane number OR cyclohexane reduces knocking OR cyclohexane is less likely to produce pre-ignition OR cyclohexane is a more efficient fuel OR cyclohexane burns better OR easier to burn OR cyclohexane combusts more easily OR improves combustion DO NOT ALLOW cyclohexane ignites more easily ALLOW ORA for hexane IGNORE cyclohexane increases volatility of fuel IGNORE cyclohexane has a lower boiling point
					cyclohexane is a better fuel on its own is NOT sufficient cyclohexane burns more cleanly on its own is NOT sufficient
	(c)	(i)	<i>Unsaturated:</i> Contains (at least one) carbon–carbon double bond OR C=C OR multiple carbon–carbon bond ✓		DO NOT ALLOW just 'contains a double bond'
			<i>hydrocarbon</i> : Contains hydrogen and carbon only ✓	2	DO NOT ALLOW 'a mixture of carbon and hydrogen' OR 'contains carbon and hydrogen' OR carbon and hydrogen molecules only
		(ii)	More than one hydrogen atom is substituted OR 'multisubstitution' (by chlorine) OR further substitution occurs ✓	1	 ALLOW can get dichloro-compounds (IGNORE numbering) ALLOW reaction forms more than one organic product DO NOT ALLOW 'forms termination products' on its own Reaction is not specific OR reaction is difficult to control is NOT sufficient

G	uesti	on	Answer	Mark	Guidance
	(c)	(iii)	Contains a lone pair that can be donated \checkmark	1	ALLOW it can donate an electron pair 'lone pair' on its own is NOT sufficient
		(iv)		2	 ALLOW skeletal, displayed or structural formulae for A and B ALLOW combination of types of formulae as long as it is unambiguous DO NOT ALLOW molecular formula For A, ALLOW carbonyl group on any carbon atom as it is still cyclohexanone For B, ALLOW bromine atom on any carbon atom as it is still bromocyclohexane

Question	Answer	Mark	Guidance
Question (C) (V)	Answer Correct dipole on Br ₂ / correct partial charges on Br ₂ ✓ Correct curly arrow from double bond to attack bromine atom and correct curly arrow to show heterolytic fission of Br–Br ✓ Correct carbocation / carbonium ion drawn with the full positive charge shown: C ⁺ ✓ Correct curly arrow from lone pair of Br ⁻ to correct carbon atom OR correct curly arrow from negative charge of Br ⁻ to correct carbon atom ✓	Mark 4	 ANNOTATE WITH TICKS AND CROSSES Curly arrow must come from covalent bonds and not atoms DO NOT ALLOW C^{δ+} for charge on carbonium ion Curly arrow from bromide ion can come from the negative charge or the lone pair DO NOT ALLOW Br^{δ−} instead of Br[−] Lone pair does not need to be shown on Br[−] or used in
	$H_{2}C - CH_{2} + H_{2}C - C$		mechanism Treat missing hydrogens on the CH ₂ as a slip Treat missing hydrogens on the double bond or carbonium ion as a slip providing a bond is shown ie H ₂ C—CH ₂ H ₂ C —CH
	Total	15	